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2.2 Matrix-Vector Multiplication

Up to now we have used matrices to solve systems of linear equations by manipulating the rows of
the augmented matrix. In this section we introduce a different way of describing linear systems that
makes more use of the coefficient matrix of the system and leads to a useful way of “multiplying”
matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the plane with coordinates (a1, a2)
and (b1, b2) are equal if and only if a1 = b1 and a2 = b2. Moreover, a similar condition applies to
points (a1, a2, a3) in space. We extend this idea as follows.

An ordered sequence (a1, a2, . . . , an) of real numbers is called an ordered n-tuple. The word
“ordered” here reflects our insistence that two ordered n-tuples are equal if and only if corresponding
entries are the same. In other words,

(a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if a1 = b1, a2 = b2, . . . , and an = bn.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar from geometry.

Definition 2.4 The set Rn of ordered n-tuples of real numbers

Let R denote the set of all real numbers. The set of all ordered n-tuples from R has a
special notation:

Rn denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in Rn: As rows (r1, r2, . . . , rn) or

columns


r1
r2
...

rn

; the notation we use depends on the context. In any event they are called vectors

or n-vectors and will be denoted using bold type such as x or v. For example, an m×n matrix A
will be written as a row of columns:

A =
[

a1 a2 · · · an
]

where a j denotes column j of A for each j.

If x and y are two n-vectors in Rn, it is clear that their matrix sum x+y is also in Rn as is the
scalar multiple kx for any real number k. We express this observation by saying that Rn is closed
under addition and scalar multiplication. In particular, all the basic properties in Theorem 2.1.1
are true of these n-vectors. These properties are fundamental and will be used frequently below
without comment. As for matrices in general, the n×1 zero matrix is called the zero n-vector in
Rn and, if x is an n-vector, the n-vector −x is called the negative x.

Of course, we have already encountered these n-vectors in Section 1.3 as the solutions to systems
of linear equations with n variables. In particular we defined the notion of a linear combination
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of vectors and showed that a linear combination of solutions to a homogeneous system is again a
solution. Clearly, a linear combination of n-vectors in Rn is again in Rn, a fact that we will be using.

Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations depend only on the coefficient
matrix A and the column x of variables, and not on the constants. This observation leads to a
fundamental idea in linear algebra: We view the left sides of the equations as the “product” Ax of
the matrix A and the vector x. This simple change of perspective leads to a completely new way of
viewing linear systems—one that is very useful and will occupy our attention throughout this book.

To motivate the definition of the “product” Ax, consider first the following system of two equa-
tions in three variables:

ax1 + bx2 + cx3 = b1
a′x1 + b′x2 + c′x3 = b1

(2.2)

and let A=

[
a b c
a′ b′ c′

]
, x=

 x1
x2
x3

, b=

[
b1
b2

]
denote the coefficient matrix, the variable matrix,

and the constant matrix, respectively. The system (2.2) can be expressed as a single vector equation[
ax1 + bx2 + cx3
a′x1 + b′x2 + c′x3

]
=

[
b1
b2

]
which in turn can be written as follows:

x1

[
a
a′

]
+ x2

[
b
b′

]
+ x3

[
c
c′

]
=

[
b1
b2

]
Now observe that the vectors appearing on the left side are just the columns

a1 =

[
a
a′

]
, a2 =

[
b
b′

]
, and a3 =

[
c
c′

]
of the coefficient matrix A. Hence the system (2.2) takes the form

x1a1 + x2a2 + x3a3 = b (2.3)

This shows that the system (2.2) has a solution if and only if the constant matrix b is a linear
combination3 of the columns of A, and that in this case the entries of the solution are the coefficients
x1, x2, and x3 in this linear combination.

Moreover, this holds in general. If A is any m×n matrix, it is often convenient to view A as a
row of columns. That is, if a1, a2, . . . , an are the columns of A, we write

A =
[

a1 a2 · · · an
]

and say that A =
[

a1 a2 · · · an
]

is given in terms of its columns.
3Linear combinations were introduced in Section 1.3 to describe the solutions of homogeneous systems of linear

equations. They will be used extensively in what follows.
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Now consider any system of linear equations with m×n coefficient matrix A. If b is the constant

matrix of the system, and if x=


x1
x2
...

xn

 is the matrix of variables then, exactly as above, the system

can be written as a single vector equation

x1a1 + x2a2 + · · ·+ xnan = b (2.4)

Example 2.2.1

Write the system


3x1 + 2x2 − 4x3 = 0
x1 − 3x2 + x3 = 3

x2 − 5x3 =−1
in the form given in (2.4).

Solution.

x1

 3
1
0

+ x2

 2
−3

1

+ x3

 −4
1

−5

=

 0
3

−1



As mentioned above, we view the left side of (2.4) as the product of the matrix A and the vector
x. This basic idea is formalized in the following definition:

Definition 2.5 Matrix-Vector Multiplication

Let A =
[

a1 a2 · · · an
]

be an m×n matrix, written in terms of its columns

a1, a2, . . . , an. If x =


x1
x2
...

xn

 is any n-vector, the product Ax is defined to be the m-vector

given by:
Ax = x1a1 + x2a2 + · · ·+ xnan

In other words, if A is m×n and x is an n-vector, the product Ax is the linear combination of the
columns of A where the coefficients are the entries of x (in order).

Note that if A is an m×n matrix, the product Ax is only defined if x is an n-vector and then the
vector Ax is an m-vector because this is true of each column a j of A. But in this case the system of
linear equations with coefficient matrix A and constant vector b takes the form of a single matrix
equation

Ax = b
The following theorem combines Definition 2.5 and equation (2.4) and summarizes the above dis-
cussion. Recall that a system of linear equations is said to be consistent if it has at least one
solution.
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Theorem 2.2.1

1. Every system of linear equations has the form Ax = b where A is the coefficient
matrix, b is the constant matrix, and x is the matrix of variables.

2. The system Ax = b is consistent if and only if b is a linear combination of the
columns of A.

3. If a1, a2, . . . , an are the columns of A and if x =


x1
x2
...

xn

, then x is a solution to the

linear system Ax = b if and only if x1, x2, . . . , xn are a solution of the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

A system of linear equations in the form Ax = b as in (1) of Theorem 2.2.1 is said to be written in
matrix form. This is a useful way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system Ax = b into the problem of
expressing the constant matrix B as a linear combination of the columns of the coefficient matrix
A. Such a change in perspective is very useful because one approach or the other may be better in
a particular situation; the importance of the theorem is that there is a choice.

Example 2.2.2

If A =

 2 −1 3 5
0 2 −3 1

−3 4 1 2

 and x =


2
1
0

−2

, compute Ax.

Solution. By Definition 2.5: Ax = 2

 2
0

−3

+1

 −1
2
4

+0

 3
−3

1

−2

 5
1
2

=

 −7
0

−6

.

Example 2.2.3

Given columns a1, a2, a3, and a4 in R3, write 2a1 −3a2 +5a3 +a4 in the form Ax where A is
a matrix and x is a vector.

Solution. Here the column of coefficients is x =


2

−3
5
1

 . Hence Definition 2.5 gives

Ax = 2a1 −3a2 +5a3 +a4

where A =
[

a1 a2 a3 a4
]

is the matrix with a1, a2, a3, and a4 as its columns.
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Example 2.2.4

Let A =
[

a1 a2 a3 a4
]

be the 3×4 matrix given in terms of its columns a1 =

 2
0

−1

,

a2 =

 1
1
1

, a3 =

 3
−1
−3

, and a4 =

 3
1
0

. In each case below, either express b as a linear

combination of a1, a2, a3, and a4, or show that it is not such a linear combination. Explain
what your answer means for the corresponding system Ax = b of linear equations.

a. b =

 1
2
3

 b. b =

 4
2
1


Solution. By Theorem 2.2.1, b is a linear combination of a1, a2, a3, and a4 if and only if
the system Ax = b is consistent (that is, it has a solution). So in each case we carry the
augmented matrix [A|b] of the system Ax = b to reduced form.

a. Here

 2 1 3 3 1
0 1 −1 1 2

−1 1 −3 0 3

→

 1 0 2 1 0
0 1 −1 1 0
0 0 0 0 1

, so the system Ax = b has no

solution in this case. Hence b is not a linear combination of a1, a2, a3, and a4.

b. Now

 2 1 3 3 4
0 1 −1 1 2

−1 1 −3 0 1

→

 1 0 2 1 1
0 1 −1 1 2
0 0 0 0 0

, so the system Ax = b is

consistent.

Thus b is a linear combination of a1, a2, a3, and a4 in this case. In fact the general solution
is x1 = 1−2s− t, x2 = 2+ s− t, x3 = s, and x4 = t where s and t are arbitrary parameters.

Hence x1a1 + x2a2 + x3a3 + x4a4 = b =

 4
2
1

 for any choice of s and t. If we take s = 0 and

t = 0, this becomes a1 +2a2 = b, whereas taking s = 1 = t gives −2a1 +2a2 +a3 +a4 = b.

Example 2.2.5

Taking A to be the zero matrix, we have 0x = 0 for all vectors x by Definition 2.5 because
every column of the zero matrix is zero. Similarly, A0 = 0 for all matrices A because every
entry of the zero vector is zero.
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Example 2.2.6

If I =

 1 0 0
0 1 0
0 0 1

, show that Ix = x for any vector x in R3.

Solution. If x =

 x1
x2
x3

 then Definition 2.5 gives

Ix = x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1

=

 x1
0
0

+

 0
x2
0

+

 0
0

x3

=

 x1
x2
x3

= x

The matrix I in Example 2.2.6 is called the 3×3 identity matrix, and we will encounter such
matrices again in Example 2.2.11 below. Before proceeding, we develop some algebraic properties
of matrix-vector multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2
Let A and B be m×n matrices, and let x and y be n-vectors in Rn. Then:

1. A(x+y) = Ax+Ay.

2. A(ax) = a(Ax) = (aA)x for all scalars a.

3. (A+B)x = Ax+Bx.

Proof. We prove (3); the other verifications are similar and are left as exercises. Let A=
[

a1 a2 · · · an
]

and B =
[

b1 b2 · · · bn
]

be given in terms of their columns. Since adding two matrices is the
same as adding their columns, we have

A+B =
[

a1 +b1 a2 +b2 · · · an +bn
]

If we write x =


x1
x2
...

xn

 Definition 2.5 gives

(A+B)x = x1(a1 +b1)+ x2(a2 +b2)+ · · ·+ xn(an +bn)

= (x1a1 + x2a2 + · · ·+ xnan)+(x1b1 + x2b2 + · · ·+ xnbn)

= Ax+Bx

Theorem 2.2.2 allows matrix-vector computations to be carried out much as in ordinary arithmetic.
For example, for any m×n matrices A and B and any n-vectors x and y, we have:

A(2x−5y) = 2Ax−5Ay and (3A−7B)x = 3Ax−7Bx
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We will use such manipulations throughout the book, often without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a system

Ax = b

of linear equations. There is a related system

Ax = 0

called the associated homogeneous system, obtained from the original system Ax = b by re-
placing all the constants by zeros. Suppose x1 is a solution to Ax = b and x0 is a solution to Ax = 0
(that is Ax1 = b and Ax0 = 0). Then x1+x0 is another solution to Ax = b. Indeed, Theorem 2.2.2
gives

A(x1 +x0) = Ax1 +Ax0 = b+0 = b

This observation has a useful converse.

Theorem 2.2.3
Suppose x1 is any particular solution to the system Ax = b of linear equations. Then every
solution x2 to Ax = b has the form

x2 = x0 +x1

for some solution x0 of the associated homogeneous system Ax = 0.

Proof. Suppose x2 is also a solution to Ax = b, so that Ax2 = b. Write x0 = x2 − x1. Then
x2 = x0 +x1 and, using Theorem 2.2.2, we compute

Ax0 = A(x2 −x1) = Ax2 −Ax1 = b−b = 0

Hence x0 is a solution to the associated homogeneous system Ax = 0.

Note that gaussian elimination provides one such representation.

Example 2.2.7

Express every solution to the following system as the sum of a specific solution plus a
solution to the associated homogeneous system.

x1 − x2 − x3 + 3x4 = 2
2x1 − x2 − 3x3 + 4x4 = 6

x1 − 2x3 + x4 = 4
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Solution. Gaussian elimination gives x1 = 4+2s− t, x2 = 2+ s+2t, x3 = s, and x4 = t where
s and t are arbitrary parameters. Hence the general solution can be written

x =


x1
x2
x3
x4

=


4+2s− t
2+ s+2t

s
t

=


4
2
0
0

+

s


2
1
1
0

+ t


−1

2
0
1




Thus x1 =


4
2
0
0

 is a particular solution (where s = 0 = t), and x0 = s


2
1
1
0

+ t


−1

2
0
1


gives all solutions to the associated homogeneous system. (To see why this is so, carry out
the gaussian elimination again but with all the constants set equal to zero.)

The following useful result is included with no proof.

Theorem 2.2.4
Let Ax = b be a system of equations with augmented matrix

[
A b

]
. Write rank A = r.

1. rank
[

A b
]

is either r or r+1.

2. The system is consistent if and only if rank
[

A b
]
= r.

3. The system is inconsistent if and only if rank
[

A b
]
= r+1.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-vector product Ax because it
requires that the columns of A be explicitly identified. There is another way to find such a product
which uses the matrix A as a whole with no reference to its columns, and hence is useful in practice.
The method depends on the following notion.

Definition 2.6 Dot Product in Rn

If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are two ordered n-tuples, their dot product is
defined to be the number

a1b1 +a2b2 + · · ·+anbn

obtained by multiplying corresponding entries and adding the results.

To see how this relates to matrix products, let A denote a 3× 4 matrix and let x be a 4-vector.
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Writing

x =


x1
x2
x3
x4

 and A =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34


in the notation of Section 2.1, we compute

Ax =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34




x1
x2
x3
x4

= x1

 a11
a21
a31

+ x2

 a12
a22
a32

+ x3

 a13
a23
a33

+ x4

 a14
a24
a34



=

 a11x1 +a12x2 +a13x3 +a14x4
a21x1 +a22x2 +a23x3 +a24x4
a31x1 +a32x2 +a33x3 +a34x4


From this we see that each entry of Ax is the dot product of the corresponding row of A with x.
This computation goes through in general, and we record the result in Theorem 2.2.5.

Theorem 2.2.5: Dot Product Rule
Let A be an m×n matrix and let x be an n-vector. Then each entry of the vector Ax is the
dot product of the corresponding row of A with x.

This result is used extensively throughout linear algebra.
If A is m×n and x is an n-vector, the computation of Ax by the dot product rule is simpler than

using Definition 2.5 because the computation can be carried out directly with no explicit reference
to the columns of A (as in Definition 2.5). The first entry of Ax is the dot product of row 1 of A
with x. In hand calculations this is computed by going across row one of A, going down the column
x, multiplying corresponding entries, and adding the results. The other entries of Ax are computed
in the same way using the other rows of A with the column x.

  =

 

row i

entry i

A x

Ax

In general, compute entry i of Ax as follows (see the diagram):

Go across row i of A and down column x, multiply corre-
sponding entries, and add the results.

As an illustration, we rework Example 2.2.2 using the dot product
rule instead of Definition 2.5.

Example 2.2.8

If A =

 2 −1 3 5
0 2 −3 1

−3 4 1 2

 and x =


2
1
0

−2

, compute Ax.
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Solution. The entries of Ax are the dot products of the rows of A with x:

Ax=

 2 −1 3 5
0 2 −3 1

−3 4 1 2




2
1
0

−2

=

 2 ·2 + (−1)1 + 3 ·0 + 5(−2)
0 ·2 + 2 ·1 + (−3)0 + 1(−2)

(−3)2 + 4 ·1 + 1 ·0 + 2(−2)

=

 −7
0

−6


Of course, this agrees with the outcome in Example 2.2.2.

Example 2.2.9

Write the following system of linear equations in the form Ax = b.

5x1 − x2 + 2x3 + x4 − 3x5 = 8
x1 + x2 + 3x3 − 5x4 + 2x5 =−2

−x1 + x2 − 2x3 + − 3x5 = 0

Solution. Write A =

 5 −1 2 1 −3
1 1 3 −5 2

−1 1 −2 0 −3

, b =

 8
−2

0

, and x =


x1
x2
x3
x4
x5

. Then the

dot product rule gives Ax =

 5x1 − x2 + 2x3 + x4 − 3x5
x1 + x2 + 3x3 − 5x4 + 2x5

−x1 + x2 − 2x3 − 3x5

, so the entries of Ax are the left

sides of the equations in the linear system. Hence the system becomes Ax = b because
matrices are equal if and only corresponding entries are equal.

Example 2.2.10

If A is the zero m×n matrix, then Ax = 0 for each n-vector x.

Solution. For each k, entry k of Ax is the dot product of row k of A with x, and this is zero
because row k of A consists of zeros.

Definition 2.7 The Identity Matrix

For each n > 2, the identity matrix In is the n×n matrix with 1s on the main diagonal
(upper left to lower right), and zeros elsewhere.
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The first few identity matrices are

I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , . . .

In Example 2.2.6 we showed that I3x = x for each 3-vector x using Definition 2.5. The following
result shows that this holds in general, and is the reason for the name.

Example 2.2.11

For each n ≥ 2 we have Inx = x for each n-vector x in Rn.

Solution. We verify the case n = 4. Given the 4-vector x =


x1
x2
x3
x4

 the dot product rule

gives

I4x =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x1
x2
x3
x4

=


x1 +0+0+0
0+ x2 +0+0
0+0+ x3 +0
0+0+0+ x4

=


x1
x2
x3
x4

= x

In general, Inx = x because entry k of Inx is the dot product of row k of In with x, and row k
of In has 1 in position k and zeros elsewhere.

Example 2.2.12

Let A =
[

a1 a2 · · · an
]

be any m×n matrix with columns a1, a2, . . . , an. If e j denotes
column j of the n×n identity matrix In, then Ae j = a j for each j = 1, 2, . . . , n.

Solution. Write e j =


t1
t2
...
tn

 where t j = 1, but ti = 0 for all i 6= j. Then Theorem 2.2.5 gives

Ae j = t1a1 + · · ·+ t ja j + · · ·+ tnan = 0+ · · ·+a j + · · ·+0 = a j

Example 2.2.12 will be referred to later; for now we use it to prove:

Theorem 2.2.6
Let A and B be m×n matrices. If Ax = Bx for all x in Rn, then A = B.

Proof. Write A =
[

a1 a2 · · · an
]

and B =
[

b1 b2 · · · bn
]

and in terms of their columns.
It is enough to show that ak = bk holds for all k. But we are assuming that Aek = Bek, which gives
ak = bk by Example 2.2.12.
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We have introduced matrix-vector multiplication as a new way to think about systems of linear
equations. But it has several other uses as well. It turns out that many geometric operations can
be described using matrix multiplication, and we now investigate how this happens. As a bonus,
this description provides a geometric “picture” of a matrix by revealing the effect on a vector when
it is multiplied by A. This “geometric view” of matrices is a fundamental tool in understanding
them.

Transformations

0 =

[
0
0

]

[
a1
a2

]

a1

a2

x1

x2

Figure 2.2.1

 a1
a2
a3


a1

a2

a3

0

x1

x2

x3

Figure 2.2.2

The set R2 has a geometrical interpretation as the euclidean plane

where a vector
[

a1
a2

]
in R2 represents the point (a1, a2) in the plane

(see Figure 2.2.1). In this way we regard R2 as the set of all points
in the plane. Accordingly, we will refer to vectors in R2 as points,
and denote their coordinates as a column rather than a row. To
enhance this geometrical interpretation of the vector

[
a1
a2

]
, it is de-

noted graphically by an arrow from the origin
[

0
0

]
to the vector as

in Figure 2.2.1.
Similarly we identify R3 with 3-dimensional space by writing a

point (a1, a2, a3) as the vector

 a1
a2
a3

 in R3, again represented by

an arrow4 from the origin to the point as in Figure 2.2.2. In this way
the terms “point” and “vector” mean the same thing in the plane or
in space.

We begin by describing a particular geometrical transformation of the plane R2.

Example 2.2.13

[
a1
a2

]

[
a1

−a2

]
0

x

y

Figure 2.2.3

Consider the transformation of R2 given by reflection in

the x axis. This operation carries the vector
[

a1
a2

]
to its

reflection
[

a1
−a2

]
as in Figure 2.2.3. Now observe that

[
a1

−a2

]
=

[
1 0
0 −1

][
a1
a2

]

so reflecting
[

a1
a2

]
in the x axis can be achieved by

4This “arrow” representation of vectors in R2 and R3 will be used extensively in Chapter 4.
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multiplying by the matrix
[

1 0
0 −1

]
.

If we write A =

[
1 0
0 −1

]
, Example 2.2.13 shows that reflection in the x axis carries each vector

x in R2 to the vector Ax in R2. It is thus an example of a function

T : R2 → R2 where T (x) = Ax for all x in R2

As such it is a generalization of the familiar functions f : R→ R that carry a number x to another
real number f (x).

x T (x)
T

Rn Rm

Figure 2.2.4

More generally, functions T : Rn → Rm are called transforma-
tions from Rn to Rm. Such a transformation T is a rule that assigns
to every vector x in Rn a uniquely determined vector T (x) in Rm

called the image of x under T . We denote this state of affairs by
writing

T : Rn → Rm or Rn T−→ Rm

The transformation T can be visualized as in Figure 2.2.4.
To describe a transformation T : Rn → Rm we must specify the vector T (x) in Rm for every x

in Rn. This is referred to as defining T , or as specifying the action of T . Saying that the action
defines the transformation means that we regard two transformations S : Rn →Rm and T : Rn →Rm

as equal if they have the same action; more formally

S = T if and only if S(x) = T (x) for all x in Rn.

Again, this what we mean by f = g where f , g : R→ R are ordinary functions.
Functions f : R→ R are often described by a formula, examples being f (x) = x2 +1 and f (x) =

sinx. The same is true of transformations; here is an example.

Example 2.2.14

The formula T


x1
x2
x3
x4

=

 x1 + x2
x2 + x3
x3 + x4

 defines a transformation R4 → R3.

Example 2.2.13 suggests that matrix multiplication is an important way of defining transforma-
tions Rn → Rm. If A is any m×n matrix, multiplication by A gives a transformation

TA : Rn → Rm defined by TA(x) = Ax for every x in Rn

Definition 2.8 Matrix Transformation TA

TA is called the matrix transformation induced by A.
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Thus Example 2.2.13 shows that reflection in the x axis is the matrix transformation R2 → R2

induced by the matrix
[

1 0
0 −1

]
. Also, the transformation R : R4 → R3 in Example 2.2.13 is the

matrix transformation induced by the matrix

A =

 1 1 0 0
0 1 1 0
0 0 1 1

 because

 1 1 0 0
0 1 1 0
0 0 1 1




x1
x2
x3
x4

=

 x1 + x2
x2 + x3
x3 + x4



Example 2.2.15

Let Rπ

2
: R2 →R2 denote counterclockwise rotation about the origin through π

2 radians (that

is, 90◦)5. Show that Rπ

2
is induced by the matrix

[
0 −1
1 0

]
.

Solution.

a

b

a
b

q

0 p x

y

R π

2
(x) =

[
−b

a

]

x =

[
a
b

]

Figure 2.2.5

The effect of Rπ

2
is to rotate the vector x =

[
a
b

]
counterclockwise through π

2 to produce the vector
Rπ

2
(x) shown in Figure 2.2.5. Since triangles 0px and

0qRπ

2
(x) are identical, we obtain Rπ

2
(x) =

[
−b

a

]
. But[

−b
a

]
=

[
0 −1
1 0

][
a
b

]
, so we obtain Rπ

2
(x) = Ax

for all x in R2 where A =

[
0 −1
1 0

]
. In other words,

Rπ

2
is the matrix transformation induced by A.

If A is the m×n zero matrix, then A induces the transformation

T : Rn → Rm given by T (x) = Ax = 0 for all x in Rn

This is called the zero transformation, and is denoted T = 0.
Another important example is the identity transformation

1Rn : Rn → Rn given by 1Rn(x) = x for all x in Rn

That is, the action of 1Rn on x is to do nothing to it. If In denotes the n× n identity matrix, we
showed in Example 2.2.11 that Inx = x for all x in Rn. Hence 1Rn(x) = Inx for all x in Rn; that is,
the identity matrix In induces the identity transformation.

Here are two more examples of matrix transformations with a clear geometric description.

5Radian measure for angles is based on the fact that 360◦ equals 2π radians. Hence π radians = 180◦ and
π

2 radians = 90◦.
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Example 2.2.16

If a > 0, the matrix transformation T
[

x
y

]
=

[
ax
y

]
induced by the matrix A =

[
a 0
0 1

]
is

called an x-expansion of R2 if a > 1, and an x-compression if 0 < a < 1. The reason for

the names is clear in the diagram below. Similarly, if b > 0 the matrix A =

[
1 0
0 b

]
gives

rise to y-expansions and y-compressions.

0
x

y

[
x
y

]

0
x

y

[ 1
2 x
y

]
x-compression

a = 1
2

0
x

y

[ 3
2 x
y

]
x-expansion

a = 3
2

Example 2.2.17

If a is a number, the matrix transformation T
[

x
y

]
=

[
x+ay

y

]
induced by the matrix

A =

[
1 a
0 1

]
is called an x-shear of R2 (positive if a > 0 and negative if a < 0). Its effect

is illustrated below when a = 1
4 and a =−1

4 .

0
x

y

[
x
y

]

0
x

y

[
x+ 1

4 y
y

]Positive x-shear

a = 1
4

0
x

y

[
x− 1

4 y
y

]Negative x-shear

a =−1
4

0

x =

[
x
y

]
x

y

Tw(x) =

[
x+2
y+1

]

Figure 2.2.6

We hasten to note that there are important geometric transfor-
mations that are not matrix transformations. For example, if w is a
fixed column in Rn, define the transformation Tw : Rn → Rn by

Tw(x) = x+w for all x in Rn

Then Tw is called translation by w. In particular, if w =

[
2
1

]
in
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R2, the effect of Tw on
[

x
y

]
is to translate it two units to the right

and one unit up (see Figure 2.2.6).
The translation Tw is not a matrix transformation unless w = 0. Indeed, if Tw were induced by

a matrix A, then Ax = Tw(x) = x+w would hold for every x in Rn. In particular, taking x = 0
gives w = A0 = 0.

Exercises for 2.2

Exercise 2.2.1 In each case find a system of equa-
tions that is equivalent to the given vector equation.
(Do not solve the system.)

a. x1

 2
−3

0

+ x2

 1
1
4

+ x3

 2
0

−1

=

 5
6

−3



b. x1


1
0
1
0

+ x2


−3

8
2
1

+ x3


−3

0
2
2

+ x4


3
2
0

−2

=


5
1
2
0



b. x1 − 3x2 − 3x3 + 3x4 = 5
8x2 + 2x4 = 1

x1 + 2x2 + 2x3 = 2
x2 + 2x3 − 5x4 = 0

Exercise 2.2.2 In each case find a vector equation
that is equivalent to the given system of equations.
(Do not solve the equation.)

a. x1 − x2 + 3x3 = 5
−3x1 + x2 + x3 =−6

5x1 − 8x2 = 9

b. x1 − 2x2 − x3 + x4 = 5
−x1 + x3 − 2x4 =−3
2x1 − 2x2 + 7x3 = 8
3x1 − 4x2 + 9x3 − 2x4 = 12

b. x1


1

−1
2
3

 + x2


−2

0
−2
−4

 + x3


−1

1
7
9

 +

x4


1

−2
0

−2

=


5

−3
8

12


Exercise 2.2.3 In each case compute Ax using: (i)
Definition 2.5. (ii) Theorem 2.2.5.

a. A =

[
3 −2 0
5 −4 1

]
and x =

 x1
x2
x3

.

b. A =

[
1 2 3
0 −4 5

]
and x =

 x1
x2
x3

.

c. A =

 −2 0 5 4
1 2 0 3

−5 6 −7 8

 and x =


x1
x2
x3
x4

.

d. A =

 3 −4 1 6
0 2 1 5

−8 7 −3 0

 and x =


x1
x2
x3
x4

.

b. Ax =

[
1 2 3
0 −4 5

] x1
x2
x3

 = x1

[
1
0

]
+

x2

[
2

−4

]
+ x3

[
3
5

]
=

[
x1 + 2x2 + 3x3

− 4x2 + 5x3

]

d. Ax =

 3 −4 1 6
0 2 1 5

−8 7 −3 0




x1
x2
x3
x4


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= x1

 3
0

−8

 + x2

 −4
2
7

 + x3

 1
1

−3

 +

x4

 6
5
0

=

 3x1 − 4x2 + x3 + 6x4
2x2 + x3 + 5x4

−8x1 + 7x2 − 3x3


Exercise 2.2.4 Let A =

[
a1 a2 a3 a4

]
be

the 3 × 4 matrix given in terms of its columns

a1 =

 1
1

−1

, a2 =

 3
0
2

, a3 =

 2
−1

3

, and a4 = 0
−3

5

. In each case either express b as a linear

combination of a1, a2, a3, and a4, or show that it is
not such a linear combination. Explain what your
answer means for the corresponding system Ax = b
of linear equations.

b =

 0
3
5

a) b =

 4
1
1

b)

b. To solve Ax = b the reduction is 1 3 2 0 4
1 0 −1 −3 1

−1 2 3 5 1


↓ 1 0 −1 −3 1

0 1 1 1 1
0 0 0 0 0

 .

So the general solution is


1+ s+3t
1− s− t

s
t

.

Hence (1+s+3t)a1+(1−s−t)a2+sa3+ta4 =
b for any choice of s and t. If s = t = 0, we
get a1 + a2 = b; if s = 1 and t = 0, we have
2a1 +a3 = b.

Exercise 2.2.5 In each case, express every solution
of the system as a sum of a specific solution plus a
solution of the associated homogeneous system.

x+ y+ z= 2
2x+ y = 3
x− y− 3z= 0

a) x− y− 4z=−4
x+ 2y+ 5z= 2
x+ y+ 2z= 0

b)

x1 + x2 − x3 − 5x5 = 2
x2 + x3 − 4x5 =−1
x2 + x3 + x4 − x5 =−1

2x1 − 4x3 + x4 + x5 = 6

c)

2x1 + x2 − x3 − x4 =−1
3x1 + x2 + x3 − 2x4 =−2
−x1 − x2 + 2x3 + x4 = 2
−2x1 − x2 + 2x4 = 3

d)

b.

 −2
2
0

+ t

 1
−3

1



d.


3

−9
−2

0

+ t


−1

4
1
1


Exercise 2.2.6 If x0 and x1 are solutions to the
homogeneous system of equations Ax = 0, use Theo-
rem 2.2.2 to show that sx0+ tx1 is also a solution for
any scalars s and t (called a linear combination of
x0 and x1).
We have Ax0 = 0 and Ax1 = 0 and so A(sx0 + tx1) =
s(Ax0)+ t(Ax1) = s ·0+ t ·0 = 0.

Exercise 2.2.7 Assume that A

 1
−1

2

 = 0 =

A

 2
0
3

. Show that x0 =

 2
−1

3

 is a solution to

Ax = b. Find a two-parameter family of solutions to
Ax = b.

Exercise 2.2.8 In each case write the system in
the form Ax= b, use the gaussian algorithm to solve
the system, and express the solution as a particular
solution plus a linear combination of basic solutions
to the associated homogeneous system Ax = 0.

a. x1 − 2x2 + x3 + 4x4 − x5 = 8
−2x1 + 4x2 + x3 − 2x4 − 4x5 =−1

3x1 − 6x2 + 8x3 + 4x4 − 13x5 = 1
8x1 − 16x2 + 7x3 + 12x4 − 6x5 = 11
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b. x1 − 2x2 + x3 + 2x4 + 3x5 =−4
−3x1 + 6x2 − 2x3 − 3x4 − 11x5 = 11
−2x1 + 4x2 − x3 + x4 − 8x5 = 7
−x1 + 2x2 + 3x4 − 5x5 = 3

b. x =


−3

0
−1

0
0

+

s


2
1
0
0
0

+ t


−5

0
2
0
1


 .

Exercise 2.2.9 Given vectors a1 =

 1
0
1

,

a2 =

 1
1
0

, and a3 =

 0
−1

1

, find a vector b that

is not a linear combination of a1, a2, and a3. Justify
your answer. [Hint: Part (2) of Theorem 2.2.1.]

Exercise 2.2.10 In each case either show that the
statement is true, or give an example showing that
it is false.

a.
[

3
2

]
is a linear combination of

[
1
0

]
and[

0
1

]
.

b. If Ax has a zero entry, then A has a row of
zeros.

c. If Ax = 0 where x 6= 0, then A = 0.

d. Every linear combination of vectors in Rn can
be written in the form Ax.

e. If A =
[

a1 a2 a3
]

in terms of its columns,
and if b = 3a1 −2a2, then the system Ax = b
has a solution.

f. If A =
[

a1 a2 a3
]

in terms of its columns,
and if the system Ax = b has a solution, then
b = sa1 + ta2 for some s, t.

g. If A is m× n and m < n, then Ax = b has a
solution for every column b.

h. If Ax = b has a solution for some column b,
then it has a solution for every column b.

i. If x1 and x2 are solutions to Ax = b, then
x1 −x2 is a solution to Ax = 0.

j. Let A =
[

a1 a2 a3
]

in terms of its
columns. If a3 = sa1+ ta2, then Ax = 0, where

x =

 s
t
−1

.

b. False.
[

1 2
2 4

][
2

−1

]
=

[
0
0

]
.

d. True. The linear combination x1a1+ · · ·+xnan

equals Ax where A =
[

a1 · · · an
]

by The-
orem 2.2.1.

f. False. If A =

[
1 1 −1
2 2 0

]
and x =

 2
0
1

,

then

Ax=

[
1
4

]
6= s

[
1
2

]
+t

[
1
2

]
for any s and t.

h. False. If A =

[
1 −1 1

−1 1 −1

]
, there is a so-

lution for b =

[
0
0

]
but not for b =

[
1
0

]
.

Exercise 2.2.11 Let T : R2 → R2 be a transfor-
mation. In each case show that T is induced by a
matrix and find the matrix.

a. T is a reflection in the y axis.

b. T is a reflection in the line y = x.

c. T is a reflection in the line y =−x.

d. T is a clockwise rotation through π

2 .

b. Here T
[

x
y

]
=

[
y
x

]
=

[
0 1
1 0

][
x
y

]
.

d. Here T
[

x
y

]
=

[
y
−x

]
=

[
0 1

−1 0

][
x
y

]
.
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Exercise 2.2.12 The projection P :R3 →R2 is de-

fined by P

 x
y
z

=

[
x
y

]
for all

 x
y
z

 in R3. Show

that P is induced by a matrix and find the matrix.

Exercise 2.2.13 Let T : R3 → R3 be a transfor-
mation. In each case show that T is induced by a
matrix and find the matrix.

a. T is a reflection in the x− y plane.

b. T is a reflection in the y− z plane.

b. Here

T

 x
y
z

=

 −x
y
z

=

 −1 0 0
0 1 0
0 0 1

 x
y
z

 ,

so the matrix is

 −1 0 0
0 1 0
0 0 1

.

Exercise 2.2.14 Fix a > 0 in R, and define Ta :
R4 → R4 by Ta(x) = ax for all x in R4. Show that
T is induced by a matrix and find the matrix. [T
is called a dilation if a > 1 and a contraction if
a < 1.]

Exercise 2.2.15 Let A be m× n and let x be in
Rn. If A has a row of zeros, show that Ax has a zero
entry.

Exercise 2.2.16 If a vector b is a linear combi-
nation of the columns of A, show that the system
Ax = b is consistent (that is, it has at least one so-
lution.)

Write A =
[

a1 a2 · · · an
]

in terms of its
columns. If b = x1a1 + x2a2 + · · ·+ xnan where the
xi are scalars, then Ax = b by Theorem 2.2.1 where
x =

[
x1 x2 · · · xn

]T . That is, x is a solution to
the system Ax = b.

Exercise 2.2.17 If a system Ax = b is inconsistent
(no solution), show that b is not a linear combina-
tion of the columns of A.

Exercise 2.2.18 Let x1 and x2 be solutions to the
homogeneous system Ax = 0.

a. Show that x1 +x2 is a solution to Ax = 0.

b. Show that tx1 is a solution to Ax = 0 for any
scalar t.

b. By Theorem 2.2.3, A(tx1) = t(Ax1) = t ·0 = 0;
that is, tx1 is a solution to Ax = 0.

Exercise 2.2.19 Suppose x1 is a solution to the
system Ax = b. If x0 is any nontrivial solution to
the associated homogeneous system Ax = 0, show
that x1 + tx0, t a scalar, is an infinite one parameter
family of solutions to Ax = b. [Hint: Example 2.1.7
Section 2.1.]

Exercise 2.2.20 Let A and B be matrices of the
same size. If x is a solution to both the system
Ax = 0 and the system Bx = 0, show that x is a
solution to the system (A+B)x = 0.

Exercise 2.2.21 If A is m×n and Ax = 0 for every
x in Rn, show that A = 0 is the zero matrix. [Hint:
Consider Ae j where e j is the jth column of In; that
is, e j is the vector in Rn with 1 as entry j and every
other entry 0.]

Exercise 2.2.22 Prove part (1) of Theorem 2.2.2.

If A is m × n and x and y are n-vectors, we
must show that A(x + y) = Ax + Ay. Denote the
columns of A by a1, a2, . . . , an, and write x =[

x1 x2 · · · xn
]T and y =

[
y1 y2 · · · yn

]T .
Then x+ y =

[
x1 + y1 x2 + y2 · · · xn + yn

]T , so
Definition 2.1 and Theorem 2.1.1 give A(x+ y) =
(x1 + y1)a1 +(x2 + y2)a2 + · · ·+(xn + yn)an = (x1a1 +
x2a2 + · · ·+ xnan)+ (y1a1 + y2a2 + · · ·+ ynan) = Ax+
Ay.

Exercise 2.2.23 Prove part (2) of Theorem 2.2.2.
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